If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7p2 + -16p + 6 = 0 Reorder the terms: 6 + -16p + 7p2 = 0 Solving 6 + -16p + 7p2 = 0 Solving for variable 'p'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 0.8571428571 + -2.285714286p + p2 = 0 Move the constant term to the right: Add '-0.8571428571' to each side of the equation. 0.8571428571 + -2.285714286p + -0.8571428571 + p2 = 0 + -0.8571428571 Reorder the terms: 0.8571428571 + -0.8571428571 + -2.285714286p + p2 = 0 + -0.8571428571 Combine like terms: 0.8571428571 + -0.8571428571 = 0.0000000000 0.0000000000 + -2.285714286p + p2 = 0 + -0.8571428571 -2.285714286p + p2 = 0 + -0.8571428571 Combine like terms: 0 + -0.8571428571 = -0.8571428571 -2.285714286p + p2 = -0.8571428571 The p term is -2.285714286p. Take half its coefficient (-1.142857143). Square it (1.306122449) and add it to both sides. Add '1.306122449' to each side of the equation. -2.285714286p + 1.306122449 + p2 = -0.8571428571 + 1.306122449 Reorder the terms: 1.306122449 + -2.285714286p + p2 = -0.8571428571 + 1.306122449 Combine like terms: -0.8571428571 + 1.306122449 = 0.4489795919 1.306122449 + -2.285714286p + p2 = 0.4489795919 Factor a perfect square on the left side: (p + -1.142857143)(p + -1.142857143) = 0.4489795919 Calculate the square root of the right side: 0.670059394 Break this problem into two subproblems by setting (p + -1.142857143) equal to 0.670059394 and -0.670059394.Subproblem 1
p + -1.142857143 = 0.670059394 Simplifying p + -1.142857143 = 0.670059394 Reorder the terms: -1.142857143 + p = 0.670059394 Solving -1.142857143 + p = 0.670059394 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '1.142857143' to each side of the equation. -1.142857143 + 1.142857143 + p = 0.670059394 + 1.142857143 Combine like terms: -1.142857143 + 1.142857143 = 0.000000000 0.000000000 + p = 0.670059394 + 1.142857143 p = 0.670059394 + 1.142857143 Combine like terms: 0.670059394 + 1.142857143 = 1.812916537 p = 1.812916537 Simplifying p = 1.812916537Subproblem 2
p + -1.142857143 = -0.670059394 Simplifying p + -1.142857143 = -0.670059394 Reorder the terms: -1.142857143 + p = -0.670059394 Solving -1.142857143 + p = -0.670059394 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '1.142857143' to each side of the equation. -1.142857143 + 1.142857143 + p = -0.670059394 + 1.142857143 Combine like terms: -1.142857143 + 1.142857143 = 0.000000000 0.000000000 + p = -0.670059394 + 1.142857143 p = -0.670059394 + 1.142857143 Combine like terms: -0.670059394 + 1.142857143 = 0.472797749 p = 0.472797749 Simplifying p = 0.472797749Solution
The solution to the problem is based on the solutions from the subproblems. p = {1.812916537, 0.472797749}
| 3-7x=0 | | -2x-3=30+4x+28 | | 35y+5=3 | | 2-3n=5n | | 0.5x-75=90 | | 2x-5+4x=27 | | 6-2n=4n | | 6q^2-6q=5q^2-9q+18 | | -0.25x^2+4x=-2 | | 2x-5+4x= | | 1/2-3/4(x-8)-2x | | =0.023L+540+7524 | | 7x-6x=-13 | | 6-4n=7n | | 4.6z-2.7=-1.2 | | 18-1/3n=9 | | f(x)=x^2-3x-20 | | 3x(2y+3y)=90 | | -2=3y-18-5j | | x/4-5/6=31/5 | | N^2+9=89 | | 13a^2=12 | | Log(x+100)=2+logx | | 3/4-1/2x=7/16 | | 2n-7=55 | | 2(n)-7=55 | | 2x-6-4x=4x | | 1.5x+2=18 | | N+2-7=55 | | (8a+5)(a-2)=0 | | .25x+.15y=39 | | -8x^2=-424 |